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Abstract. A path-integral quantum Monte Carlo method is applied to the two-dimensional
single-polaron Holstein model. Simulation data are shown to exhibit 1/M2-scaling with the
number of imaginary-time slicesM used in the Trotter decomposition. Numerical extrapol-
ation toM → ∞ yields very accurate estimation of polaron energetic characteristics. Kinetic,
potential and total energy are calculated as functions of the electron–phonon coupling strength
for different phonon frequencies. The small-polaron regime is found in the strong-coupling limit
for all of the frequencies studied. The transition to the polaron state is sharp in the adiabatic
regime but broadens as the frequency increases. In the adiabatic limit the polaron forms at
λcr = 0.80± 0.05.

1. Introduction

The basic properties of the small polaron are well established; see the reviews [1–6] and the
references therein. However, the lack of an exact solution continues to prompt new research,
especially in the parameter regions not accessible to the various perturbative techniques.
In the last decade the polaron problem attracted additional attention in connection with
high-temperature superconductivity [7–9]. In the cuprates the electron kinetic energy
is suppressed due to strong correlations. On the other hand, the electron–phonon (EP)
interaction is found to be strong [7]. Therefore the potential energy of the EP interaction
could be comparable with the kinetic energy which may lead to the formation of small
polarons. Although in this respect the many-polaron problem is the main interest, the
single-polaron one is the necessary first step.

With the dramatic progress in computer performance in the last two decades new
computational approaches to the old problem have been developed. The most popular
method is the exact diagonalization (ED) of Hamiltonian matrices. It allows one to compute
static as well as dynamic physical properties with very high accuracy and thereby provides
exact and unbiased information about the polaron properties. The ED method has been
exploited by a number of groups [10–14]. The main limitation of this approach is its
restriction to very small clusters. The Hilbert space of an EP model is infinite, even for
a finite number of lattice sites, since the number of phonons is not conserved. Usually in
ED studies the Hilbert space is truncated in such a way that the total number of phonons
is limited to some numbernmax . With a typicalnmax = 50 the maximum number of sites
feasible is a modest four [11–13]. Then one hopes that polaron properties obtained on such
a small cluster are reasonably close to the bulk limit. This is true for such quantities as the
ground-state energy or the local EP correlation function, especially in models with local EP
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interaction like Holstein or Su–Schrieffer–Heeger models. However, this is definitely not
so, for instance, for the effective mass, which requires the knowledge of the ground-state
energy for infinitesimally small momenta absent on a finite lattice. Moreover, the exact-
diagonalization approach suffers from either a finite-size effect or poornmax-convergence
in the following cases: (i) in the band-electron regime but close to the small-polaron
crossover, where the size of the phonon cloud is still large; (ii) in models with long-
range EP interaction; (iii) in the adiabatic regime when the number of excited phonons
is large [11]. Recently developed ED-related techniques such as the variational Lanczos
[15], numerical strong-coupling renormalization [16] and density-matrix [17] ones are still
non-universal although they are an advance beyond the traditional ED scheme. Another
fundamental limitation of all of the methods mentioned is their restriction to the ground-
state properties. No finite-temperature algorithm, so important for the comparison with
experiments, has been developed so far.

An alternative numerical approach to the polaron problem is the quantum Monte
Carlo (QMC) method based on the mapping of ad-dimensional quantum system to a
(d + 1)-dimensional classical one and the subsequent application of standard Monte Carlo
algorithms. The traditional QMC scheme, which applies to the general many-polaron case,
amounts to simulating both the electron and phonon subsystems [18–21]. For the single-
polaron problem a much more efficient algorithm was developed by De Raedt and Lagendijk
(DRL) in 1982 [22]. It stems from the observation that in the single-electron case the
majority of degrees of freedom in a path-integral representation of a partition function are
phononic. The latter, however, can be integrated out analytically with Feynman’s technique
[23, 24] without making any approximation. The resulting system is a single electron which
interacts with itself via a retarded potential. Thus, DRL’s method follows the strategy which
proved so successful in the studies of the continuum Fröhlich polaron [23, 2, 25]. The
only difference is that the self-interacting electron is treated numerically by the Metropolis
algorithm [26] rather than variationally.

It is quite remarkable that DRL’s method lacksany of the shortcomings of the exact-
diagonalization approach, mentioned above. It is independent of the lattice size and
dimensionality and of the form of the electron kinetic energy. It is temperature dependent,
the inverse temperature entering the formalism as the extent of the extra imaginary-time
dimension. It is equally well suited for studying different parameter regions including
intermediate phonon frequencies and coupling constants. The general idea of the method
is applicable to any type of phonon spectrum and EP interaction as long as the latter is
linear in phonon coordinates and the lattice is harmonic. Actual simulations, however, were
performed only for local EP interaction without [22] and with [27] phonon dispersion. It
differs from other QMC schemes in that the polaron contribution is separated analytically
from the lattice one and hence the polaron properties are not obscured by the statistical
noise of the phonon subsystem.

Therefore it is surprising that since the pioneering work of DRL on the Holstein polaron
[22, 27] (see also [28]) and bipolaron [29] very little has been done to develop the method
further. The only recent development is the calculation of the polaron effective mass [30].
One might suspect that the numerical accuracy of the method is not good enough to provide
quantitative information about the system. It is the aim of this paper to demonstrate that
this is not the case. In fact, energetic characteristics can be calculated with accuracy better
than 10−2 of the bare electron kinetic energy. This is sufficient for practical purposes, in
particular for establishing phase boundaries. The crucial device here is to make use of
the specific scaling that the Monte Carlo data exhibit with the change of the number of
imaginary-time slices (see below). With this development the QMC method becomes able



Trotter-number scaling in MC studies of the small polaron 10677

to provide not only qualitative but also accurate quantitative information about the polaron.
We will also present numerical results for the two-dimensional Holstein model for different
frequency regimes.

2. Theoretical formalism

In this paper the small polaron is studied in the framework of the Holstein model [31].
In its simplest version the model describes an electron moving in a lattice composed of
molecules which do not interact with each other. We will consider the two-dimensional
square lattice with periodic boundary conditions. With each lattice site is associated a
single local vibrational mode, i.e. the molecules may be viewed as harmonic oscillators with
frequencyω and reduced massm. Since the oscillators are not coupled, the phonons are
dispersionless. The electron moves through the lattice by means of hops between nearest
oscillators, with the hopping matrix element−t . The interaction is chosen in the form
‘density–local displacement’ which means that the electron interacts only with the oscillator
that it currently occupies and the interaction energy is proportional to the displacementξ

of the oscillator from its equilibrium position. The model Hamiltonian reads

H = He +Hph +He−ph = −t
∑
〈ij〉

a
†
i aj +

1

2m

∑
i

p2
i +

mω2

2

∑
i

ξ2
i + g′

∑
i

a
†
i aiξi (1)

where i numbers lattice sites,ai (a†i ) is the electron destruction (creation) operator,
pi = −i h̄ ∂/∂ξi and g′ is the EP coupling constant. This coupling constant has the
dimensionality of force and its sign is irrelevant. Very often the electron–phonon interaction
is introduced in a different form:

He−ph = gh̄ω
∑
i

a
†
i ai(b

†
i + bi) (2)

where b†i and bi are phonon operators. The coupling constantsg and g′ are related as
follows:

g = g′√
2mh̄ω3

. (3)

Two more quantities are useful in the description of the polaron problem. The first one is
the polaron shiftEp which characterizes the potential energy of the EP interaction. The
second one is the ratioλ of Ep and the bare half-bandwidth of a free electron. Withg and
g′ as defined above, one has

Ep ≡ g2h̄ω = g′2

2mω2
λ ≡ 2Ep

W
= g′2

2ztmω2
(4)

wherez is the number of nearest neighbours (z = 4 for the square lattice). Note that both
Ep andλ are independent ofm, sinceω ∝ m−1/2.

In the rest of this section we present the necessary formulae of the path-integral QMC
method due to De Raedt and Lagendijk [22]. The partition function of the system is
approximated by the Trotter formula [32, 33]

Z ≡ Tr
{
e−βH

} = lim
M→∞

ZM

= lim
M→∞

Tr

{(
exp

(
− β
M
He

)
exp

(
− β
M
Hph

)
exp

(
− β
M
He−ph

))M}
(5)
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where β = 1/kBT is the inverse absolute temperature andM � 1 is the number of
imaginary-time slices introduced. Inserting the resolution of the identityM − 1 times and
evaluating the matrix elements of the operators exp(−(β/M)He), exp(−(β/M)Hph) and
exp(−(β/M)He−ph) one obtains

ZM = c1

∑
{rj }

∫ ∞
−∞

[
N2∏
i=1

M−1∏
j=0

dξij

]
e−Sph

[
M∏
j=1

I (rj+1− rj )
]
. (6)

Here the new indexj numbers imaginary-time slices introduced by the decomposition (5),
j = 0, . . . ,M − 1. Accordingly,rj is the position of the electron andξij the displacement
of the ith oscillator in thej th time slice. The functionI represents the electron kinetic
energy:

I (rj+1− rj ) = 1

N

∑
k

exp(ik · (rj+1− rj )) exp(2τ(coskx + cosky)) (7)

with τ ≡ βt/M andN the total number of lattice sites.Sph in equation (6) is the phonon
action

Sph =
N∑
i=1

M−1∑
j=0

[
m

2τh̄2 (ξi,j+1− ξij )2+ τ mω
2

2
ξ2
ij − τg′ξij δi,xj

]
(8)

which is a quadratic form in oscillator coordinates. Therefore the integral overξij in
equation (6) can be performed analytically with Feynman’s technique [23, 24] leading to
the final result

ZM = c2Z
ph

M Z
F
M ZFM =

∑
{rj }

ρ({rj }) (9)

ρ({rj }) =
[

M∏
j=1

I (rj+1− rj )
]

exp

( M−1∑
j,j ′=0

δrj ,rj ′F(j − j ′)
)

(10)

F(j − j ′) = τ 3g2
1

4M

M−1∑
l=0

cos[(2πl/M)(j − j ′)]
1− cos(2πl/M)+ τ 2ω2

1/2
. (11)

Herec2 is an unimportant constant andZphM is the partition function of free bosons, which
can be calculated exactly and is not of interest. The fermionic partition functionZFM is a sum
over all possible trajectories{rj } which are periodic in imaginary time, i.e.rM = r0. Each
trajectory contributes its weightρ({rj }), equation (10), which consists of a kinetic energy
factor and the one from the retarded self-interaction. This self-interaction is mediated
by phonons and characterized by the memory functionF(j − j ′), equation (11). The
dimensionless phonon frequencyω1 and coupling constantg1 appearing inF(j − j ′) are
related to the model parameters as follows:

ω1 ≡ h̄ω
t

g2
1 ≡

h̄2g′2

mt3
= 2g2ω3

1 = 2zω2
1λ. (12)

The partition function is of no interest by itself but its derivatives are. In particular,
the internal energy may be obtained from the thermodynamic relationU = −∂(lnZ)/∂β.
Applying it to equations (10) and (10) one discovers (apart from the energy of free phonons)
two terms, one resulting from the kinetic part ofρ({rj }) and another from the interaction

1

t
UF
M = KF

M + PFM (13)
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KF
M = −

1

M

M−1∑
j=0

∑
l

〈
I (rj+1− rj + l)
I (rj+1− rj )

〉
(14)

PFM = −
1

M

M−1∑
j=0

M−1∑
j ′=0

∂F (j − j ′)
∂τ

〈
δrj ,rj ′

〉
. (15)

Here l runs over four nearest neighbours of the square lattice and the following definition
is introduced:

〈A〉 ≡ 1

ZFM

∑
{rj }

A({rj })ρ({rj }). (16)

KM andPM are the average polaron kinetic and potential energy respectively.

3. The simulation procedure

Due to the complicated structure of the memory functionF(j − j ′), the averaging of (16)
cannot be done analytically. However, one can use the Metropolis algorithm [26] which
is well suited for the calculation of this type of average. Details of the algorithm are
well known and can be found in the literature [28, 34]. It is very important that after
the elimination of phonons the simulated system contains one degree of freedom only.
Therefore the transition from one member of the Markov sequence to the next requires a
small amount of calculation. This fact allows one to accumulate a large set of statistics
within reasonable computational time. In this work as many as∼2× 108 single steps were
performed for every set of model parameters which however required only a few hours
of CPU time of a modern workstation. Also due to the single-degree-of-freedom property
the size of the lattice is absolutely irrelevant. It does not affect the computational time
and simulation results saturate after approximatelyN = 8× 8. In this work a lattice of
N = 32× 32 sites was studied.

It is important that Trotter decomposition (5) is approximate for any finite number of
imaginary-time slicesM. In practice, simulations can be done at finiteM thereby yielding
only approximations to true results. The question therefore is that of how largeM needs to
be for the simulation results to be reliable. Letα be the largest energetic parameter of the
model, i.e.α = max{t, h̄ω, g′√h̄/mω}, andx ≡ βα/M. Then one has

exp

(
β

M
H

)
= exp

(
β

M
He

)
exp

(
β

M
Hph

)
exp

(
β

M
He−ph

)
+O(x2) (17)

sinceHe + Hph andHe−ph do not commute. The total partition function is a product of
M operators of type (17). Thus one might expect the accuracy of the whole scheme to be
O(xβα). If fact, the accuracy of action (8) and all of the rest of the formalism is much
higher. The reason for this is the commutativity ofHe−ph with the operators projecting on
the real-space electron–phonon configurations used as basis states. Therefore equation (17)
is equivalent to the symmetric decomposition

exp

(
β

M
H

)
= exp

(
β

2M
He−ph

)
exp

(
β

M
He

)
exp

(
β

M
Hph

)
exp

(
β

2M
He−ph

)
+O(x3)

(18)

known to be correct up tox3 [28]. Thus, the formulae of the previous section are correct up
to O(x2βα). Usually the values ofM are chosen intuitively on the basis of the condition
x2βα � 1 [18–20]. But in this case the corrections to true results remain uncertain because



10680 P Kornilovitch

the prefactor is unknown. The efficiency of the present algorithm enables us to study the
M-convergence of the QMC data systematically and to make use of the 1/M2-scaling that
the data are expected to exhibit. This amounts to simulating the system at several different
values ofM and the extrapolation of the results toM →∞.

0 50000 100000 150000
Number of measurements

−0.50

−0.45

−0.40

−0.35

K

M=150

M=180

M=210

M=240

0.000 0.010 0.020 0.030 0.040
(30/M)

2

−0.50

−0.45

−0.40

−0.35

−0.30

K
Figure 1. The running average for the polaron kinetic
energy forβ = 15t−1, ω1 = 0.3, g1 = 1.5 for different
values ofM. The results scale as 1/M2. The lattice
size is 32× 32.

Figure 2. The extrapolation of the data of figure 1 to the
M = ∞ limit. The accuracy of theM = 150, τ = 1/10
result (the point on the far right) is 40%.

One should expect different behaviours depending on which of the three energy
parameters is the largest one. For smallω1 and g1 the electron hopping integral is the
largest, and henceα = τ = βt/M. In this case no significantM-dependence is observed
starting withM = 90 (for the inverse temperatureβ = 15t−1 this corresponds toτ = 1

6). An
example is shown below in figure 3(a). The error may be estimated simply as the statistical
variation of the running average. In the strong-coupling (but still adiabatic,ω1 < 1) case the
energy of the EP interaction becomes dominant. The parameter which regulates the accuracy
of the approximation (18) is nowα = g′

√
h̄/mω = τg1/

√
ω1. Consider a typical set of

parametersβ = 15t−1, ω1 = 0.3t and g1 = 1.5. Even forM = 150, which corresponds
to a rather smallτ = 1/10, one hasα = 0.27. This is not a very small parameter and the
results are expected to change with the further increase ofM. This is illustrated in figure 1.
The running average for the polaron kinetic energy is shown as a function of the number
of measurements for four different values ofM = 150, 180, 210 and 240. For each value
of M two series have been measured. The simulation data exhibit a perfect 1/M2-scaling
which is seen in figure 2. Extrapolation toM = ∞ provides a good estimate for the true
value of the kinetic energy for these model parameters. Note that theM = 150 result,
which corresponds to a rather smallτ = 1/10, differs from the correct one by as much
as 40%. Measurements of the potential and total energy also reveal the 1/M2-dependence.
Analogous considerations suggest a scaling at smallg1 but largeω1. This is indeed the
case as shown in figure 3(b). Note that the absolute value of the potential energy is small
(sinceg1 is small). Nonetheless, the finite-M correction is significant and might lead to
large relative errors.

Thus, the systematic study of QMC data as functions ofM reveals parameter regions
where theM-dependence is significant. In most cases the use of 1/M2-scaling enables
one to reduce the absolute errors to∼10−2t . One has to emphasize that this scaling is not
usually exploited numerically in QMC studies because this is too time-consuming. It is
the efficiency of the present algorithm that allows one to consider very largeM and then
repeat simulations for several different values ofM, all within reasonable computational
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time. It should be noted also that the largestM = 32 used in reference [22] was apparently
too small to reveal the 1/M2-scaling. Moreover, a 1/M-extrapolation scheme was used to
estimate theM →∞ limit. This appears to be incorrect in view of the present research.

The bulk of the numerical results for the two-dimensional Holstein model, presented in
the next section, were obtained by the extrapolation procedure described above using four
different values ofM. These values were usually 90, 120, 150, 180 in the band-electron
regime, 120, 150, 180, 210 around the transition to the polaron state, and 150, 180, 210,
240 in the deep-polaronic regime. The temperature was taken asT = 1

15t . This is a
low temperature which ensures that the measured characteristics are close to ground-state
properties. For eachω1, g1 andM, two series of 150 000 measurements were made. Within
a series, successive measurements were taken everyM single steps. At the beginning of
each series, 106 single steps were performed to warm up the system. Sometimes extra
series of more measurements were run. Such checks have shown that the results obtained
with the settings used are numerically stable. The absolute error of the calculated values is
estimated as (0.01–0.02)t at small and large couplings, i.e. away from the transition. Near
the transition the error increases up to (0.10–0.15)t due to large statistical fluctuations. In
all cases the error is smaller than the size of the symbols used to represent the data.

0 50000 100000 150000
Number of measurements

−0.0205

−0.0200

−0.0195

−0.0190

−0.0185

P

0 50000 100000 150000
−0.0550

−0.0500

−0.0450

−0.0400

P

a)

b)

Figure 3. The potential energy in the band-electron regime. (a)ω1 = 0.1, g1 = 0.1; (b)
ω1 = 2.0, g1 = 0.5. In both cases the measurements were made forM = 90, 120, 150, 180. In
the latter case (higher frequency) the finite-M scaling is transparent.

4. Numerical results

We begin with the adiabatic regime,ω1 = 0.1. Note that at such a small frequency,
phonons are easy to create and the strong-coupling limit is not accessible using the exact-
diagonalization technique [11]. For the QMC method the small frequency is not an obstacle.
Figure 4 shows the polaron kinetic, potential and total energies as functions of the reduced
coupling constantg1. At g1 = 0 the potential energy is zero and the total one is very
close to the bottom of the free-electron band,−4t . For small couplingsg1 6 0.2, all of
the energies acquire small corrections which are quadratic ing1. (This is natural since the
coupling enters the trajectory weight asg2

1; see equation (11).) Note that corrections to the
kinetic and potential energies partially compensate each other yielding a correction to the
total energy 4–5 times smaller than either of the two.

Around g1 ≈ 0.25–0.27 the system changes drastically. For this coupling the kinetic
energy increases sharply and the potential one decreases by approximately the same amount.
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Figure 4. The kinetic, potential and total polaron
energies forω1 = 0.1. The solid lines are guides to
the eye. The bottom of the bare single-electron band
is shown by the dashed line. The dotted line indicates
the strong-coupling limit for interaction energy,−EP =
−g2

1/2ω
2
1.

Figure 5. Two typical imaginary-time trajectories: the
left-hand one is for the band-electron regime,g1 =
0.250; the right-hand one is for just after the polaron
formation, g1 = 0.265. In both casesω1 = 0.1,
β = 15t−1 andM = 150; cf. figure 4.

This effect is interpreted within the small-polaron picture as follows. In the adiabatic regime
the kinetic energy of lattice vibrations is small and the system is governed by the balance
between the electron kinetic energy and the energy of the EP interaction (the latter includes
the elastic energy of the lattice). The ratio of the two defines the coupling constantλ;
see equation (4). Atλ ∼ 1 the energy of EP interaction exceeds the kinetic energy and it
becomes energetically favourable for the electron to gain a large EP interaction energy and
to lose kinetic energy. Accordingly, at this point, oscillators acquire finite displacements
from their equilibrium positions resulting in a very rapid decrease of the potential energy
by '2.2t ∼ EP . At the same time the electron gets localized in a potential well created by
the oscillators which increases its kinetic energy due to the uncertainty principle. The fact
that the total energy does not change significantly at the transition shows that the energy
is redistributed between kinetic and potential parts suggesting restructuring of the ground
state. The path-integral QMC method allows one to visualize such restructuring. Figure 5
compares two typical electron trajectories. The left-hand one was sampled atg1 = 0.250,
i.e. just before the polaron formation. It represents a band electron with an extended wave
function. The right-hand trajectory was sampled atg1 = 0.265, i.e. after the self-localized
state was formed. It is nearly a straight line with rare deviations by one lattice site.

In the small-polaron regime,g1 > 0.265, the total energy is dominated by the potential
contribution which rapidly approaches its strong-coupling limit,U → tP → −EP =
−g2

1/2ω
2
1 (shown in figure 4 by the dotted line). The kinetic energy increases with coupling,

suggesting stronger localization of the electron. One should emphasize that the main
contribution to the kinetic energy comes from the very fast internal motion of the electron
in the potential well and not from the coherent band motion. Therefore the average kinetic
energy is not related to the effective mass of the polaron. If fact, the effective mass can
be calculated with the QMC method but this amounts to simulating the system with open
boundary conditions in imaginary time [30]; see also [25] for the case of the Fröhlich
polaron.

Consider now higher phonon frequencies. Figures 6–9 show simulation data for
ω1 = 0.3, 0.5, 1.0 and 2.0 respectively. One can see that the higher the frequency the
larger the corrections to the energies in the band-electron regime (small couplings). As a



Trotter-number scaling in MC studies of the small polaron 10683

0.0 0.5 1.0 1.5 2.0
g1

−10.0

−8.0

−6.0

−4.0

−2.0

0.0
E

ne
rg

y/
t

KE
PE
TE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
g1

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

E
ne

rg
y/

t

KE
PE
TE

Figure 6. As figure 4, but forω1 = 0.3. Figure 7. As figure 4, but forω1 = 0.5.
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Figure 8. As figure 4, but forω1 = 1.0. Figure 9. As figure 4, but forω1 = 2.0.

result the transition broadens. Forω1 = 1.0 and 2.0 the transition region is already difficult
to locate. At these frequencies the polaron formation is a gradual crossover rather than a
sharp transition. Also interesting is that the potential energy approaches the polaron shift as
the frequency increases. The polaron shift appears as a natural parameter after the Lang–
Firsov transformation [35] of the initial Hamiltonian (1) and characterizes the energy of the
EP interaction. Our results show that the approach to the polaron problem based on this
transformation becomes adequate in the anti-adiabatic regime.

Apart from the differences near the transition region, figures 4 and 6–9 have different
scales of the coupling axis. However, as presented, the data for the adiabatic regime
ω1 < 0.5 look very similar. One notes that the axis scale scales approximately linearly
with the frequency. This suggests that thermodynamic properties depend on the ratio of
the coupling constantg1 and the frequency rather than the two parameters separately. A
natural physical parameter involvingg1/ω1 is the coupling constantλ. In figures 10 and
11 the kinetic and potential energies are shown as functions ofλ for ω1 = 0.1, 0.3 and 0.5.
One can see that all of the curves are nearly identical in the small-polaron regime,λ > 1.
The transition moves slightly fromλcr = 0.83± 0.05 atω1 = 0.1 to λcr = 0.93± 0.05
at ω1 = 0.5. By extrapolation we estimateλcr = 0.80± 0.05 in theω → 0 limit. These
results are consistent with a physical expectation that the polaron should form when the
energy of the EP interaction exceeds the kinetic energy lost due to localization, i.e. at
λcr ∼ 1. In the band-electron regime theω1-dependence is observed; this implies that there
are two independent parameters,g1 and ω1. For larger frequencies ¯hω = 1.0t and 2.0t
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Figure 10. The polaron kinetic energy versus the
coupling constantλ = g2
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1.

Figure 11. The polaron potential energy versus the
coupling constantλ = g2

1/2zω
2
1.

(not shown in figures 10 and 11), the transition broadens and shifts toλ > 1. The physical
reason for this is that the lattice kinetic energy becomes large for ¯hω > t . In this case
the system is governed by the balance between the lattice energy and the energy of the EP
interaction. Then the polaron is expected to form atg > 1 which is a stricter condition
thanλ > 1 for h̄ω > t (see a transparent discussion of the difference between adiabatic and
anti-adiabatic regimes in reference [36]). Thus, the polaron transition is expected to move
to largerλ and this is exactly what is seen in the QMC results.

5. Conclusions

In this paper we have argued that the quantum Monte Carlo method has definite advantages
over other numerical approaches in the study of the long-standing yet unsolved small-polaron
problem. The method is not affected by finite-size effects and it is universal for all parameter
regions including that of non-zero temperatures. At the same time the temperature can be
taken low enough to probe essentially ground-state properties of the system.

In the QMC method only finite numbers of imaginary-time slicesM can be studied.
We have shown in this paper how this difficulty can be overcome. At big enoughM,
QMC data exhibit a 1/M2-scaling consistent with the accuracy of the symmetric Trotter
decomposition. This has enabled us to carry out extrapolation toM → ∞ and to reach
very high absolute accuracy∼10−2t in the estimation of polaron energetic characteristics.

We have presented results of detailed QMC simulations of the two-dimensional Holstein
model. The polaron energy has been calculated as a function of the electron–phonon
coupling constant for different phonon frequencies. In the adiabatic regime, ¯hω < t , the
physics is controlled by the balance of the electron kinetic energy and the interaction energy,
i.e. by the coupling constantλ. At λcr ∼ 1 a sharp transition to the small-polaron state
occurs. In the limitω → 0 the critical coupling is estimated asλcr = 0.80± 0.05. At
larger frequencies the lattice kinetic energy plays an important role in the energetic balance.
The polaron transition broadens and shifts towards largerλ.
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